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15. Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4,4),

(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

16. Let R be the relation in the set N given by R = {(a, b) : a = b – 2, b > 6}. Choose

the correct answer.

(A) (2, 4) ∈ R (B) (3, 8) ∈ R (C) (6, 8) ∈ R (D) (8, 7) ∈ R

1.3  Types of Functions

The notion of a function along with some special functions like identity function, constant

function, polynomial function, rational function, modulus function, signum function etc.

along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been

studied. As the concept of function is of paramount importance in mathematics and

among other  disciplines as well, we would like to extend our study about function from

where we finished earlier. In this section, we would like to study different types of

functions.

Consider the functions  f
1
, f

2
, f

3
 and f

4
 given by the following diagrams.

In Fig 1.2, we observe that the images of distinct elements of X
1 
under the function

f
1
 are distinct, but the image of two distinct elements 1 and 2 of X

1
 under f

2
 is same,

namely b. Further, there are some elements like e and f in X
2
 which are not images of

any element of X
1
 under f

1
, while all elements of X

3
 are images of some elements of X

1

under f
3
. The above observations lead to the following definitions:

Definition 5 A function f : X → Y is defined to be one-one (or injective), if the images

of distinct elements of X under f are distinct, i.e., for every x
1
, x

2
 ∈ X, f (x

1
) = f (x

2
)

implies x
1
 = x

2
. Otherwise, f is called many-one.

The function f
1
 and f

4 
in Fig 1.2 (i) and (iv) are one-one and the function f

2
 and f

3

in Fig 1.2 (ii) and (iii) are many-one.

Definition 6 A function f : X → Y is said to be onto (or surjective), if every element

of Y is the image of some element of X under f, i.e., for every y ∈ Y, there exists an

element x in X such that f (x) = y.

The function f
3
 and f

4 
in Fig 1.2 (iii), (iv) are onto and the function f

1
 in Fig 1.2 (i) is

not onto as elements e, f in X
2
 are not the image of any element in X

1
 under f

1
.
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MATHEMATICS8

Remark  f : X → Y is onto if and only if Range of f = Y.

Definition 7 A function f : X → Y is said to be one-one and onto (or bijective), if f is

both one-one and onto.

The function f
4
 in Fig 1.2 (iv) is one-one and onto.

Example 7 Let A be the set of all 50 students of Class X in a school. Let f : A → N be

function defined by f (x) = roll number of the student x. Show that f is one-one

but not onto.

Solution No two different students of the class can have same roll number. Therefore,

f must be one-one. We can assume without any loss of generality that roll numbers of

students are from 1 to 50. This implies that 51 in N is not roll number of any student of

the class, so that 51 can not be image of any element of X under f. Hence,  f is not onto.

Example 8 Show that the function f : N → N, given by f (x) = 2x, is one-one but not

onto.

Solution The function f is one-one, for f (x
1
) = f (x

2
) ⇒ 2x

1
 = 2x

2
 ⇒ x

1
 = x

2
. Further,

f is not onto, as for 1 ∈ N, there does not exist any x in N such that f (x) = 2x = 1.

Fig 1.2 (i) to (iv)
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RELATIONS AND FUNCTIONS 9

Example 9  Prove that the function f : R → R, given by f (x) = 2x, is one-one and onto.

Solution  f is one-one, as f (x
1
) = f (x

2
) ⇒ 2x

1
 = 2x

2
 ⇒ x

1
 = x

2
. Also, given any real

number y in R, there exists 
2

y
 in R such that f (

2

y
) = 2 . (

2

y
) = y. Hence, f is onto.

Fig 1.3

Example 10  Show that the function f : N → N, given by f (1) = f (2) = 1 and f (x) = x – 1,

for every x > 2, is onto but not one-one.

Solution  f is not one-one, as f (1) = f (2) = 1. But f is onto, as given any y ∈ N, y ≠ 1,

we can choose x as y + 1 such that f (y + 1) = y + 1 – 1 = y. Also for 1 ∈ N, we

have f (1) = 1.

Example 11  Show that the function f : R → R,

defined as f (x) = x2, is neither one-one nor onto.

Solution  Since f (– 1) = 1 = f (1), f is not one-

one. Also, the element – 2 in the co-domain R is

not image of any element x in the domain R

(Why?). Therefore f is not onto.

Example 12  Show that f : N → N, given by

1,if is odd,
( )

1,if is even

x x
f x

x x

+ 
=  

− 

is both one-one and onto. Fig 1.4
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Solution  Suppose f (x
1
) = f (x

2
). Note that if x

1
 is odd and x

2
 is even, then we will have

x
1
 + 1 = x

2
 – 1, i.e., x

2
 – x

1
 = 2 which is impossible. Similarly, the possibility of x

1
 being

even and x
2
 being odd can also be ruled out, using the similar argument. Therefore,

both x
1
 and x

2
 must be either odd or even. Suppose both x

1
 and x

2
 are odd. Then

f (x
1
) = f (x

2
) ⇒ x

1
 + 1 = x

2
 + 1 ⇒ x

1
 = x

2
. Similarly, if both x

1
 and x

2
 are even, then also

f (x
1
) = f (x

2
) ⇒ x

1
 – 1 = x

2
 – 1 ⇒ x

1
 = x

2
. Thus, f is one-one. Also, any odd number

2r + 1 in the co-domain N is the image of 2r + 2 in the domain N and any even number

2r in the co-domain N is the image of 2r – 1 in the domain N. Thus, f is onto.

Example 13 Show that an onto function f : {1, 2, 3} → {1, 2, 3} is always one-one.

Solution Suppose f is not one-one. Then there exists two elements, say 1 and 2 in the

domain whose image in the co-domain is same. Also, the image of 3 under f can be

only one element. Therefore, the range set can have at the most two elements of the

co-domain {1, 2, 3}, showing that f  is not onto, a contradiction. Hence, f must be one-one.

Example 14 Show that a one-one function f : {1, 2, 3} → {1, 2, 3} must be onto.

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different

elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary

finite set X, i.e., a one-one function f : X → X is necessarily onto and an onto map

f : X → X is necessarily one-one, for every finite set X. In contrast to this, Examples 8

and 10 show that for an infinite set, this may not be true. In fact, this is a characteristic

difference between a finite and an infinite set.

EXERCISE 1.2

1. Show that the function f : R
∗∗∗∗∗
 → R

∗∗∗∗∗
 defined by f (x) = 

1

x
 is one-one and onto,

where R
∗∗∗∗∗
 is the set of all non-zero real numbers. Is the result true, if the domain

R
∗∗∗∗∗
 is replaced by N with co-domain being same as R

∗∗∗∗∗
?

2. Check the injectivity and surjectivity of the following functions:

(i) f : N → N given by f (x) = x2

(ii) f : Z → Z given by f (x) = x2

(iii) f : R → R given by f (x) = x2

(iv) f : N → N given by f (x) = x3

(v) f : Z → Z given by f (x) = x3

3. Prove that the Greatest Integer Function f : R → R, given by f (x) = [x], is neither

one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
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RELATIONS AND FUNCTIONS 11

4. Show that the Modulus Function f : R → R, given by f (x) = | x |, is neither one-

one nor onto, where | x | is x, if x is positive or 0 and | x | is – x, if x is negative.

5. Show that the Signum Function f : R → R, given by

f x

x

x

x

( )

,

,

� ,

=

>

=

<









1 0

0 0

1 0

if

if

if

is neither one-one nor onto.

6. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function

from A to B. Show that f is one-one.

7. In each of the following cases, state whether the function is one-one, onto or

bijective. Justify your answer.

(i) f : R → R defined by f (x) = 3 – 4x

(ii) f : R → R defined by f (x) = 1 + x2

8. Let A and B be sets. Show that f : A × B → B × A such that f (a, b) = (b, a) is

bijective function.

9. Let f : N → N be defined by f (n) = 

n
n

n
n

+








1

2

2

,

,

if is odd

if is even

 for all n ∈ N.

State whether the function f is bijective. Justify your answer.

10. Let A = R – {3} and B = R – {1}. Consider the function  f : A → B defined by

f (x) = 
2

3

x

x

− 
 

− 
. Is f one-one and onto? Justify your answer.

11. Let f : R → R be defined as f(x) = x4. Choose the correct answer.

(A) f is one-one onto (B) f is many-one onto

(C) f is one-one but not onto (D) f is neither one-one nor onto.

12. Let f : R → R be defined as f (x) = 3x. Choose the correct answer.

(A) f is one-one onto (B) f is many-one onto

(C) f is one-one but not onto (D) f is neither one-one nor onto.
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MATHEMATICS12

1.4  Composition of Functions and Invertible Function

In this section, we will study composition of functions and the inverse of a bijective

function. Consider the set A of all students, who appeared in Class X of  a Board

Examination in 2006. Each student appearing in the Board Examination is assigned a

roll number by the Board which is written by the students in the answer script at the

time of examination. In order to have confidentiality, the Board arranges to deface the

roll numbers of students in the answer scripts and assigns a fake code number to each

roll number. Let B ⊂ N be the set of all roll numbers and C ⊂ N be the set of all code

numbers. This gives rise to two functions f : A → B and g : B → C given by f (a) = the

roll number assigned to the student a and g (b) = the code number assigned to the roll

number b. In this process each student is assigned a roll number through the function f

and each roll number is assigned a code number through the function g. Thus, by the

combination of these two functions, each student is eventually attached a code number.

This leads to the following definition:

Definition 8 Let f : A → B and g : B → C be two functions. Then the composition of

f and g, denoted by gof, is defined as the function gof : A → C given by

gof (x) = g(f (x)), ∀  x ∈ A.

Fig 1.5

Example 15 Let f : {2, 3, 4, 5} → {3, 4, 5, 9} and g : {3, 4, 5, 9} → {7, 11, 15} be

functions defined as f (2) = 3, f (3) = 4, f (4) =  f (5) = 5 and g (3) = g (4) = 7 and

g (5) =  g (9) = 11. Find gof.

Solution We have gof (2) =  g (f (2)) = g (3) = 7, gof (3) =  g (f (3)) = g (4) = 7,

gof (4) =  g (f (4)) = g (5) = 11 and gof (5) =  g (5) = 11.

Example 16 Find gof and fog, if f : R → R and g : R → R are given by f (x) = cos x

and g (x) = 3x2. Show that gof  ≠ fog.

Solution We have gof (x) =  g (f (x)) = g (cos x) = 3 (cos x)2 = 3 cos2 x. Similarly,

fog (x) =  f (g (x)) =  f (3x2) = cos (3x2). Note that 3cos2 x ≠ cos 3x2, for x = 0. Hence,

gof ≠ fog.
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RELATIONS AND FUNCTIONS 13

Example 17 Show that if 
7 3

:
5 5

f
   

− → −   
   

R R  is defined by
3 4

( )
5 7

x
f x

x

+
=

−
 and

3 7
:

5 5
g

   
− → −   
   

R R  is defined by 
7 4

( )
5 3

x
g x

x

+
=

−
, then fog = I

A 
and gof = I

B
, where,

A = R – 
3

5

 
 
 

, B = R – 
7

5

 
 
 

; I
A
 (x) = x, ∀ x ∈ A, I

B
 (x) = x, ∀ x ∈ B are called identity

functions on sets A and B, respectively.

Solution We have

(3 4)
7 4

(5 7)3 4
( )

(3 4)5 7
5 3

(5 7)

x

xx
gof x g

xx

x

+ 
+ −+   

= = 
+−   

− − 

 = 
21 28 20 28 41

15 20 15 21 41

x x x
x

x x

+ + −
= =

+ − +

Similarly, 

(7 4)
3 4

(5 3)7 4
( )

(7 4)5 3
5 7

(5 3)

x

xx
fog x f

xx

x

+ 
+ −+   

= = 
+−   

− − 

 = 
21 12 20 12 41

35 20 35 21 41

x x x
x

x x

+ + −
= =

+ − +

Thus, gof (x) = x, ∀ x ∈ B and fog (x) = x, ∀ x ∈ A, which implies that gof = I
B

and fog = I
A
.

Example 18 Show that if f : A → B and g : B → C are one-one, then gof : A → C is

also one-one.

Solution Suppose gof (x
1
) = gof (x

2
)

⇒ g (f (x
1
)) = g(f (x

2
))

⇒ f (x
1
) = f (x

2
), as g is one-one

⇒ x
1
 = x

2
, as f is one-one

Hence, gof is one-one.

Example 19 Show that if f : A → B and g : B → C are onto, then gof : A → C is

also onto.

Solution Given an arbitrary element z ∈ C, there exists a pre-image y of z under g

such that g (y) = z, since g is onto. Further, for y ∈ B, there exists an element x in A
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MATHEMATICS14

with f (x) = y, since f is onto. Therefore, gof (x) = g (f (x)) = g (y) = z, showing that gof

is onto.

Example 20 Consider functions f and g such that composite gof is defined and is one-

one. Are f and g both necessarily one-one.

Solution Consider f : {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} defined as f (x) = x, ∀ x and

g : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6} as g (x) = x, for x = 1, 2, 3, 4 and g (5) = g (6) = 5.

Then, gof (x) = x ∀ x, which shows that gof is one-one. But g is clearly not one-one.

Example 21 Are f and g both necessarily onto, if gof is onto?

Solution Consider f : {1, 2, 3, 4} → {1, 2, 3, 4} and g : {1, 2, 3, 4} → {1, 2, 3} defined

as f (1) = 1, f (2) = 2,  f (3) = f (4) = 3, g (1) = 1, g (2) = 2 and g (3) = g (4) = 3. It can be

seen that gof is onto but f is not onto.

Remark It can be verified in general that gof is one-one implies that f is one-one.

Similarly, gof is onto implies that g is onto.

Now, we would like to have close look at the functions f and g described in the

beginning of this section in reference to a Board Examination. Each student appearing

in Class X Examination of the Board is assigned a roll number under the function f and

each roll number is assigned a code number under g. After the answer scripts are

examined, examiner enters the mark against each code number in a mark book and

submits to the office of the Board. The Board officials decode by assigning roll number

back to each code number through a process reverse to g and thus mark gets attached

to roll number rather than code number. Further, the process reverse to f assigns a roll

number to the student having that roll number. This helps in assigning mark to the

student scoring that mark. We observe that while composing f and g, to get gof, first f

and then g was applied, while in the reverse process of the composite gof, first the

reverse process of g is applied and then the reverse process of f.

Example 22 Let f : {1, 2, 3} → {a, b, c} be one-one and onto function given by

f (1) = a, f (2) = b and f (3) = c. Show that there exists a function g : {a, b, c} → {1, 2, 3}

such that gof = I
X
 and fog = I

Y
, where, X =  {1, 2, 3} and Y = {a, b, c}.

Solution Consider g : {a, b, c} → {1, 2, 3} as g (a) = 1, g (b) = 2 and g (c) = 3. It is

easy to verify that the composite gof = I
X
 is the identity function on X and the composite

fog = I
Y
 is the identity function on Y.

Remark  The interesting fact is that the result mentioned in the above example is true

for an arbitrary one-one and onto function f : X → Y. Not only this, even the converse

is also true , i.e., if f : X → Y is a function such that there exists a function g : Y → X

such that gof = I
X
 and fog = I

Y
, then f must be one-one and onto.

The above discussion, Example 22 and Remark lead to the following definition:
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RELATIONS AND FUNCTIONS 15

Definition 9 A function f : X → Y is defined to be invertible, if there exists a function

g : Y → X such that  gof = I
X
 and fog = I

Y
. The function g is called the inverse of f  and

is denoted by f –1.

Thus, if f is invertible, then f must be one-one and onto and conversely, if f is

one-one and onto, then f must be invertible. This fact significantly helps for proving a

function f to be invertible by showing that f is one-one and onto, specially when the

actual inverse of f is not to be determined.

Example 23 Let f : N → Y be a function defined as f (x) = 4x + 3, where,

Y = {y ∈ N : y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4x + 3,

for some x in the domain N . This shows that 
( 3)

4

y
x

−
= . Define g : Y → N  by

( 3)
( )

4

y
g y

−
= . Now, gof (x) = g (f (x)) = g (4x + 3) = 

(4 3 3)

4

x
x

+ −
=  and

fog (y) = f (g (y)) = f
( 3) 4 ( 3)

3
4 4

y y− − 
= + 

 
 = y – 3 + 3 = y. This shows that gof = I

N

and fog = I
Y
, which implies that f is invertible and g is the inverse of f.

Example 24 Let Y = {n2 : n ∈ N} ⊂ N . Consider f : N  → Y as f (n) = n2. Show that

f is invertible. Find the inverse of f.

Solution An arbitrary element y in Y is of the form n2, for some n ∈ N . This

implies that n = y . This gives a function g : Y → N , defined by g (y) = y . Now,

gof (n) = g (n2) = 2
n = n and fog (y) = ( ) ( )

2

f y y y= = , which shows that

gof = I
N
 and fog = I

Y
. Hence, f is invertible with f –1 = g.

Example 25 Let f ' : N  → R be a function defined as f '(x) = 4x2 + 12x + 15. Show that

f : N→ S, where, S is the range of f, is invertible. Find the inverse of f.

Solution Let y be an arbitrary element of range f. Then y = 4x2 + 12x + 15, for some

x in N, which implies that y = (2x + 3)2 + 6. This gives 
( )( )6 3

2

y
x

− −
= , as y ≥ 6.
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Let us define g : S → N by g (y) = 
( )( )6 3

2

y − −
.

Now gof (x) = g (f (x)) = g (4x2 + 12x + 15) = g ((2x + 3)2 + 6)

=
)( )( ( )

2
(2 3) 6 6 3 2 3 3

2 2

x x
x

+ + − − + −
= =

and fog (y) =
( )( ) ( )( )

2

6 3 2 6 3
3 6

2 2

y y
f

   − − − −
   = + +   
   

= ( )( )) ( )
2 2

6 3 3 6 6 6y y− − + + = − +  = y – 6 + 6 = y.

Hence, gof = I
N
 and fog =I

S
. This implies that f is invertible with f –1 = g.

Example 26 Consider f : N → N, g : N → N and h : N → R defined as f (x) = 2x,

g (y) = 3y + 4 and h (z) = sin z, ∀ x, y and z in N. Show that ho(gof ) = (hog) of.

Solution We have

   ho(gof) (x) = h(gof (x)) = h(g (f (x))) = h (g (2x))

= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4) .x∀ ∈N

Also,      ((hog) o f ) (x) = (hog) ( f (x)) = (hog) (2x) = h ( g (2x))

= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), ∀ x ∈ N.

This shows that ho(gof) = (hog) o f.

This result is true in general situation as well.

Theorem 1 If f : X → Y, g : Y → Z and h : Z → S are functions, then

ho(gof ) = (hog) o f.

Proof We have

ho(gof ) (x) = h(gof (x)) = h(g (f (x))), ∀ x in X

and (hog) of (x) = hog (f (x)) = h(g (f (x))), ∀ x in X.

Hence, ho(gof) = (hog) o f.

Example 27 Consider f : {1, 2, 3} → {a, b, c} and g : {a, b, c} → {apple, ball, cat}

defined as f (1) = a, f (2) = b, f (3) = c, g(a) = apple, g(b) = ball and g(c) = cat.

Show that f, g and gof are invertible. Find out f –1, g–1 and (gof)–1 and show that

(gof) –1 = f –1o g–1.
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RELATIONS AND FUNCTIONS 17

Solution Note that by definition, f and g are bijective functions. Let

f –1: {a, b, c} → (1, 2, 3} and g–1 : {apple, ball, cat} → {a, b, c} be defined as

f –1{a} = 1, f –1{b} = 2,  f –1{c} = 3,  g –1{apple} = a,  g –1{ball} = b and  g –1{cat} = c.

It is easy to verify that f –1o f  = I
{1, 2, 3}

, f o f –1 = I
{a, b, c}

, g –1og = I
{a, b, c}

 and  go g–1 = I
D
,

where, D = {apple, ball, cat}. Now, gof : {1, 2, 3} → {apple, ball, cat} is given by

gof (1) = apple, gof (2) = ball, gof (3) = cat. We can define

(gof)–1 : {apple, ball, cat} → {1, 2, 3} by (gof)–1 (apple) = 1,
 
(gof)–1 (ball) = 2 and

(g o f)–1 (cat) = 3. It is easy to see that (g o f)–1 o (g o f) = I
{1, 2, 3}

 and

(gof) o (gof)–1 = I
D
. Thus, we have seen that f, g and gof are invertible.

Now,    f –1og–1 (apple)= f –1(g–1(apple)) = f –1(a) = 1 = (gof)–1 (apple)

f –1og–1 (ball) = f –1(g–1(ball)) = f –1(b) = 2 = (gof)–1 (ball) and

f –1og–1 (cat) = f –1(g–1(cat)) = f –1(c) = 3 = (gof)–1 (cat).

Hence                   (gof)–1 = f –1og–1.

The above result is true in general situation also.

Theorem 2 Let f : X → Y and g : Y → Z be two invertible functions. Then gof  is also

invertible with (gof)–1 = f –1og–1.

Proof To show that gof is invertible with (gof)–1 = f –1og–1, it is enough to show that

( f –1og–1)o(gof) = I
X
 and (gof)o( f –1og–1) = I

Z
.

Now, (f –1og–1)o(gof) = ((f –1og–1) og) of, by Theorem 1

= (f –1o(g–1og)) of, by Theorem 1

= (f –1 o I
Y
) of, by definition of g–1

= I
X
.

Similarly, it can be shown that (gof ) o (f –1 o g –1) = I
Z
.

Example 28  Let S = {1, 2, 3}. Determine whether the functions f : S → S defined as

below have inverses. Find f –1, if it exists.

(a) f  = {(1, 1), (2, 2), (3, 3)}

(b) f = {(1, 2), (2, 1), (3, 1)}

(c) f = {(1, 3), (3, 2), (2, 1)}

Solution

(a) It is easy to see that f  is one-one and onto, so that f  is invertible with the inverse

 f –1 of f given by f –1 = {(1, 1), (2, 2), (3, 3)} = f.

(b) Since f (2) = f (3) = 1, f is not one-one, so that f  is not invertible.

(c) It is easy to see that f  is one-one and onto, so that f  is invertible with

f –1 = {(3, 1), (2, 3), (1, 2)}.
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EXERCISE 1.3

1. Let f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3} be given by

f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.

2. Let f, g and h be functions from R to R. Show that

(f + g) oh = foh + goh

(f . g) oh = (foh) . (goh)

3. Find gof and fog, if

(i) f (x) = | x | and g(x) = | 5x – 2 |

(ii) f (x) = 8x3 and g(x) = 

1

3x .

4. If f (x) = 
(4 3)

(6 4)

x

x

+

−
, 

2

3
x ≠ , show that fof (x) = x, for all 

2

3
x≠ . What is the

inverse of f ?

5. State with reason whether following functions have inverse

(i) f : {1, 2, 3, 4} → {10} with

f  = {(1, 10), (2, 10), (3, 10), (4, 10)}

(ii) g : {5, 6, 7, 8} → {1, 2, 3, 4} with

g = {(5, 4), (6, 3), (7, 4), (8, 2)}

(iii) h : {2, 3, 4, 5} → {7, 9, 11, 13} with

h = {(2, 7), (3, 9), (4, 11), (5, 13)}

6. Show that f : [–1, 1] → R, given by f (x) = 
( 2)

x

x +
 is one-one. Find the inverse

of the function f : [–1, 1] → Range f.

(Hint: For y ∈ Range f, y = f (x) = 
2

x

x +
, for some x in [–1, 1], i.e., x = 

2

(1 )

y

y−
)

7. Consider f : R → R given by f (x) = 4x + 3. Show that f is invertible. Find the

inverse of f.

8. Consider f : R
+
 → [4, ∞) given by f (x) = x2 + 4. Show that f is invertible with the

inverse f –1 of f given by f –1(y)  = 4y − , where R
+
 is the set of all non-negative

real numbers.
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9. Consider f : R
+
 → [– 5, ∞) given by f (x) = 9x2 + 6x – 5. Show that f is invertible

with f –1(y) = 
( )6 1

3

y + −
 
 

.

10. Let f : X → Y be an invertible function. Show that f has unique inverse.

(Hint: suppose g
1
 and g

2
 are two inverses of f. Then for all y ∈ Y,

fog
1
(y) = 1

Y
(y) = fog

2
(y). Use one-one ness of f).

11. Consider f : {1, 2, 3} → {a, b, c} given by f (1) = a, f (2) = b and f (3) = c. Find

f –1 and show that (f –1)–1 = f.

12. Let f : X → Y be an invertible function. Show that the inverse of f –1 is f, i.e.,

(f –1)–1 = f.

13. If f : R → R be given by f (x) = 

1

3 3(3 )x− , then fof (x) is

(A)
1

3x
(B) x 3 (C) x (D) (3 – x3).

14. Let f : R – 
4

3

 
− 
 

 → R be a function defined as f (x) = 
4

3 4

x

x +
. The inverse of

f is the map g : Range f → R – 
4

3

 
− 
 

 given by

(A)
3

( )
3 4

y
g y

y
=

−
(B)

4
( )

4 3

y
g y

y
=

−

(C)
4

( )
3 4

y
g y

y
=

−
(D)

3
( )

4 3

y
g y

y
=

−

1.5  Binary Operations

Right from the school days, you must have come across four fundamental operations

namely addition, subtraction, multiplication and division. The main feature of these

operations is that given any two numbers a and b, we associate another number a + b

or a – b or ab or 
a

b
, b ≠ 0. It is to be noted that only two numbers can be added or

multiplied at a time. When we need to add three numbers, we first add two numbers

and the result is then added to the third number. Thus, addition, multiplication, subtraction
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and division are examples of binary operation, as ‘binary’ means two. If we want to

have a general definition which can cover all these four operations, then the set of

numbers is to be replaced by an arbitrary set X and then general binary operation is

nothing but association of any pair of elements a, b from X to another element of X.

This gives rise to a general definition as follows:

Definition 10 A binary operation ∗ on a set A is a function ∗ : A × A → A. We denote

∗ (a, b) by a ∗ b.

Example 29 Show that addition, subtraction and multiplication are binary operations

on R, but division is not a binary operation on R. Further, show that division is a binary

operation on the set R
∗∗∗∗∗
 of nonzero real numbers.

Solution + : R × R → R is given by

  (a, b) → a + b

– : R × R → R is given by

  (a, b) → a – b

× : R × R → R is given by

  (a, b) → ab

Since ‘+’, ‘–’ and ‘×’ are functions, they are binary operations on R.

      But ÷: R × R → R, given by  (a, b) → 
a

b
, is not a function and hence not a binary

operation, as for b = 0, 
a

b
 is not defined.

However, ÷ : R
∗
 × R

∗
 → R

∗
, given by (a, b) → 

a

b
  is a function and hence a

binary operation on R
∗
.

Example 30  Show that subtraction and division are not binary operations on N.

Solution  – : N × N → N, given by (a, b) → a – b, is not binary operation, as the image

of (3, 5) under ‘–’ is 3 – 5 = – 2 ∉ N. Similarly, ÷ : N × N → N, given by (a, b) → a ÷ b

is not a binary operation, as the image of (3, 5) under ÷ is 3 ÷ 5 = 
3

5
 ∉ N.

Example 31 Show that ∗ : R × R → R given by (a, b) → a + 4b2 is a binary

operation.

Solution Since ∗ carries each pair (a, b) to a unique element a + 4b2 in R, ∗ is a binary

operation on R.
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Example 32 Let P be the set of all subsets of a given set X. Show that ∪ : P × P → P

given by (A, B) → A ∪ B and ∩ : P × P → P given by (A, B) → A ∩ B are binary

operations on the set P.

Solution Since union operation ∪ carries each pair (A, B) in P × P to a unique element

A ∪ B  in P, ∪ is binary operation on P. Similarly, the intersection operation ∩ carries

each pair (A, B) in P × P to a unique element A ∩ B in P, ∩ is a binary operation on P.

Example 33 Show that the  ∨  : R × R → R given by (a, b) → max {a, b} and the

∧  : R × R → R given by (a, b) → min {a, b} are binary operations.

Solution Since ∨  carries each pair (a, b) in R × R to a unique element namely

maximum of a and b lying in R, ∨  is a binary operation. Using the similar argument,

one can say that ∧  is also a binary operation.

Remark ∨ (4, 7) = 7, ∨ (4, – 7) = 4, ∧ (4, 7) = 4 and ∧ (4, – 7) = – 7.

When number of elements in a set A is small, we can express a binary operation ∗ on

the set A through a table called the operation table for the operation ∗. For example

consider A = {1, 2, 3}. Then, the operation ∨  on  A defined in Example 33 can be expressed

by the following operation table (Table 1.1) . Here, ∨  (1, 3) = 3, ∨  (2, 3) = 3, ∨  (1, 2) = 2.

Table 1.1

Here, we are having 3 rows and 3 columns in the operation table with (i, j) the

entry of the table being maximum of ith and jth elements of the set A. This can be

generalised for  general operation ∗ : A × A → A. If A = {a
1
, a

2
, ..., a

n
}. Then the

operation table will be having n rows and n columns with (i, j)th entry being a
i
 ∗ a

j
.

Conversely, given any operation table having n rows and n columns with each entry

being an element of A = {a
1
, a

2
, ..., a

n
}, we can define a binary operation ∗ : A × A → A

given by a
i
 ∗ a

j
 = the entry in the ith row and jth column of the operation table.

One may note that 3 and 4 can be added in any order and the result is same, i.e.,

3 + 4 = 4 + 3, but subtraction of 3 and 4 in different order give different results, i.e.,

3 – 4 ≠ 4 – 3. Similarly, in case of multiplication of 3 and 4, order is immaterial, but

division of 3 and 4 in different order give different results. Thus, addition and

multiplication of 3 and 4 are meaningful, but subtraction and division of 3 and 4 are

meaningless. For subtraction and division we have to write ‘subtract 3 from 4’, ‘subtract

4 from 3’, ‘divide 3 by 4’ or ‘divide 4 by 3’.
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This leads to the following definition:

Definition 11 A binary operation ∗ on the set X is called commutative, if a ∗ b = b ∗ a,

for every a, b ∈ X.

Example 34 Show that + : R × R → R and × : R × R → R are commutative binary

operations, but – : R × R → R and ÷ : R
∗
 × R

∗
 → R

∗
 are not commutative.

Solution Since a + b = b + a and a × b = b × a, ∀ a, b ∈ R, ‘+’ and ‘×’ are

commutative binary operation. However, ‘–’ is not commutative, since 3 – 4 ≠ 4 – 3.

Similarly, 3 ÷ 4 ≠ 4 ÷ 3 shows that ‘÷’ is not commutative.

Example 35 Show that ∗ : R × R → R defined by a ∗ b = a + 2b is not commutative.

Solution Since 3 ∗ 4 = 3 + 8 = 11 and 4 ∗ 3 = 4 + 6 = 10, showing that the operation ∗
is not commutative.

If we want to associate three elements of a set X through a binary operation on X,

we encounter a natural problem. The expression a ∗ b ∗ c may be interpreted as

(a ∗ b) ∗ c or a ∗ (b ∗ c) and these two expressions need not be same. For example,

(8 – 5) – 2 ≠ 8 – (5 – 2). Therefore, association of three numbers 8, 5 and 3 through

the binary operation ‘subtraction’ is meaningless, unless bracket is used. But in case

of addition, 8 + 5 + 2 has the same value whether we look at it as ( 8 + 5) + 2 or as

8 + (5 + 2). Thus, association of 3 or even more than 3 numbers through addition is

meaningful without using bracket. This leads to the following:

Definition 12 A binary operation ∗ : A × A → A is said to be associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c, ∈ A.

Example 36 Show that addition and multiplication are associative binary operation on

R. But subtraction is not associative on R. Division is not associative on R
∗
.

Solution Addition and multiplication are associative, since (a + b) + c = a + (b + c) and

(a × b) × c = a × (b × c) ∀  a, b, c ∈ R. However, subtraction and division are not

associative, as (8 – 5) – 3 ≠ 8 – (5 – 3) and (8 ÷ 5) ÷ 3 ≠ 8 ÷ (5 ÷ 3).

Example 37 Show that ∗ : R × R → R given by a ∗ b → a + 2b is not associative.

Solution The operation ∗ is not associative, since

(8 ∗ 5) ∗ 3 = (8 + 10) ∗ 3 = (8 + 10) + 6 = 24,

while 8 ∗ (5 ∗ 3) = 8 ∗ (5 + 6) = 8 ∗ 11 = 8 + 22 = 30.

Remark Associative property of a binary operation is very important in the sense that

with this property of a binary operation, we can write a
1
 ∗ a

2 
∗ ... ∗ a

n
 which is not

ambiguous. But in absence of this property, the expression a
1
 ∗ a

2 
∗ ... ∗ a

n
 is ambiguous

unless brackets are used. Recall that in the earlier classes brackets were used whenever

subtraction or division operations or more than one operation occurred.
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For the binary operation ‘+’ on R, the interesting feature of the number zero is that

a + 0 = a = 0 + a, i.e., any number remains unaltered by adding zero. But in case of

multiplication, the number 1 plays this role, as a × 1 = a = 1 × a, ∀  a in R. This leads

to the following definition:

Definition 13 Given a binary operation ∗ : A × A → A, an element e ∈ A, if it exists,

is called identity for the operation ∗, if a ∗ e = a = e ∗ a, ∀  a ∈ A.

Example 38 Show that zero is the identity for addition on R and 1 is the identity for

multiplication on R. But there is no identity element for the operations

– : R × R → R and ÷ : R
∗
 × R

∗
 → R

∗
.

Solution a + 0 = 0 + a = a and a × 1 = a = 1 × a, ∀ a ∈ R implies that 0 and 1 are

identity elements for the operations ‘+’ and ‘×’ respectively. Further, there is no element

e in R with a – e = e – a, ∀ a. Similarly, we can not find any element e in R
∗
 such that

a ÷ e = e ÷ a, ∀ a in R
∗
. Hence, ‘–’ and ‘÷’ do not have identity element.

Remark Zero is identity for the addition operation on R but it is not identity for the

addition operation on N, as 0 ∉ N. In fact the addition operation on N does not have

any identity.

One further notices that for the addition operation + : R × R → R, given any

a ∈ R, there exists – a in R such that a + (– a) = 0 (identity for ‘+’) = (– a) + a.

Similarly, for the multiplication operation on R, given any a ≠ 0 in R, we can choose 
1

a

in R such that a × 
1

a
 = 1(identity for ‘×’) = 

1

a
× a. This leads to the following definition:

Definition 14 Given a binary operation ∗ : A × A → A with the identity element e in A,

an element a ∈ A is said to be invertible with respect to the operation ∗, if there exists

an element b in A such that a ∗ b = e = b ∗ a and b is called the inverse of a and is

denoted by a–1.

Example 39 Show that – a is the inverse of a for the addition operation ‘+’ on R and

1

a
 is the inverse of a ≠ 0 for the multiplication operation ‘×’ on R.

Solution As a + (– a) = a – a = 0 and (– a) + a = 0, – a is the inverse of a for addition.

Similarly, for a ≠ 0, a ×
1

a
= 1 = 

1

a
× a implies that 

1

a
 is the inverse of a for multiplication.
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Example 40 Show that – a is not the inverse of a ∈ N for the addition operation + on

N and 
1

a
is not the inverse of a ∈ N for multiplication operation × on N, for a ≠ 1.

Solution Since – a ∉ N,  – a can not be inverse of a for addition operation on N,

although – a satisfies a + (– a) = 0 = (– a) + a.

Similarly, for a ≠ 1 in N, 
1

a
 ∉ N,  which implies that other than 1 no element of N

has inverse for multiplication operation on N.

Examples 34, 36, 38 and 39 show that addition on R is a commutative and associative

binary operation with 0 as the identity element and – a as the inverse of a in R ∀ a.

EXERCISE 1.4

1. Determine whether or not each of the definition of ∗ given below gives a binary

operation. In the event that ∗ is  not a binary operation, give justification for this.

(i) On Z+, define ∗ by a ∗ b = a – b

(ii) On Z+, define ∗ by a ∗ b = ab

(iii) On R, define ∗ by a ∗ b = ab2

(iv) On Z+, define ∗ by a ∗ b = | a – b |

(v) On Z+, define ∗ by a ∗ b = a

2. For each operation ∗ defined below, determine whether ∗ is binary, commutative

or associative.

(i) On Z, define a ∗ b = a – b

(ii) On Q, define a ∗ b = ab + 1

(iii) On Q, define a ∗ b = 
2

ab

(iv) On Z+, define a ∗ b = 2ab

(v) On Z+, define a ∗ b = ab

(vi) On R – {– 1}, define a ∗ b = 
1

a

b +

3. Consider the binary operation ∧ on the set {1, 2, 3, 4, 5} defined by

a ∧  b = min {a, b}. Write the operation table of the operation ∧ .
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4. Consider a binary operation ∗ on the set {1, 2, 3, 4, 5} given by the following
multiplication table (Table 1.2).

(i) Compute (2 ∗ 3) ∗ 4 and 2 ∗ (3 ∗ 4)
(ii) Is ∗ commutative?
(iii) Compute (2 ∗ 3) ∗ (4 ∗ 5).

(Hint: use the following table)

Table 1.2

5. Let ∗′ be the binary operation on the set {1, 2, 3, 4, 5} defined by
a ∗′ b = H.C.F. of a and b. Is the operation ∗′ same as the operation ∗ defined
in Exercise 4 above? Justify your answer.

6. Let ∗ be the binary operation on N given by a ∗ b = L.C.M. of a and b. Find

(i) 5 ∗ 7,   20 ∗ 16 (ii) Is ∗ commutative?

(iii) Is ∗ associative? (iv) Find the identity of ∗ in N

(v) Which elements of N are invertible for the operation ∗?

7. Is ∗ defined on the set {1, 2, 3, 4, 5} by a ∗ b = L.C.M. of a and b a binary
operation? Justify your answer.

8. Let ∗ be the binary operation on N defined by a ∗ b = H.C.F. of a and b.
Is ∗ commutative? Is ∗ associative? Does there exist identity for this binary
operation on N?

9. Let ∗ be a binary operation on the set Q of rational numbers as follows:

(i) a ∗ b = a – b (ii) a ∗ b = a2 + b2

(iii) a ∗ b = a + ab (iv) a ∗ b = (a – b)2

(v) a ∗ b = 
4

ab
(vi) a ∗ b = ab2

Find which of the binary operations are commutative and which are associative.

10. Find which of the operations given above has identity.

11. Let A = N × N and ∗ be the binary operation on A defined by

(a, b) ∗ (c, d) = (a + c, b + d)

2021-22



MATHEMATICS26

Show that ∗ is commutative and associative. Find the identity element for ∗ on

A, if any.

12. State whether the following statements are true or false. Justify.

(i) For an arbitrary binary operation ∗ on a set N, a ∗ a = a ∀ a ∈ N.

(ii) If ∗ is a commutative binary operation on N, then a ∗ (b ∗ c) = (c ∗ b) ∗ a

13. Consider a binary operation ∗ on N defined as a ∗ b = a3 + b3.  Choose the

correct answer.

(A) Is ∗ both associative and commutative?

(B) Is ∗ commutative but not associative?

(C) Is ∗ associative but not commutative?

(D) Is ∗ neither commutative nor associative?

Miscellaneous Examples

Example 41 If R
1

 and R
2
 are equivalence relations in a set A, show that R

1
 ∩ R

2
 is

also an equivalence relation.

Solution Since R
1

 and R
2
 are equivalence relations, (a, a) ∈ R

1
, and (a, a) ∈ R

2
 ∀ a ∈ A.

This implies that (a, a) ∈ R
1 

∩ R
2
, ∀ a, showing R

1 
∩ R

2
 is reflexive. Further,

(a, b) ∈ R
1 
∩ R

2
 ⇒ (a, b) ∈ R

1
 and (a, b) ∈ R

2
 ⇒ (b, a) ∈ R

1
 and (b, a) ∈ R

2
 ⇒

(b, a) ∈ R
1
 ∩ R

2
, hence, R

1 
∩ R

2
 is symmetric. Similarly, (a, b) ∈ R

1
 ∩ R

2
 and

(b, c) ∈ R
1 
∩ R

2
 ⇒ (a, c) ∈ R

1
 and (a, c) ∈ R

2
 ⇒ (a, c) ∈ R

1 
∩ R

2
. This shows that

R
1 
∩ R

2
 is transitive. Thus, R

1 
∩ R

2
 is an equivalence relation.

Example 42 Let R be a relation on the set A of ordered pairs of positive integers

defined by (x, y) R (u, v) if  and only if xv = yu. Show that R is an equivalence relation.

Solution Clearly, (x, y) R (x, y), ∀ (x, y) ∈ A, since xy = yx. This shows that R is

reflexive. Further, (x, y) R (u, v) ⇒ xv = yu ⇒ uy = vx and hence (u, v) R (x, y). This

shows that R is symmetric. Similarly, (x, y) R (u, v) and (u, v) R (a, b) ⇒ xv = yu and

ub = va ⇒ 
a a

xv yu
u u

= ⇒ 
b a

xv yu
v u

=  ⇒ xb = ya and hence (x, y) R (a, b). Thus, R

is transitive. Thus, R is an equivalence relation.

Example 43 Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let R
1
 be a relation in X given

by R
1
 = {(x, y) : x – y is divisible by 3} and R

2
 be another relation on X given by

R
2
 = {(x, y): {x, y} ⊂ {1, 4, 7}} or {x, y} ⊂ {2, 5, 8} or {x, y} ⊂ {3, 6, 9}}. Show that

R
1
 = R

2
.
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Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9} is

that difference between any two elements of these sets is a multiple of 3. Therefore,

(x, y) ∈ R
1
 ⇒ x – y is a multiple of 3 ⇒ {x, y} ⊂ {1, 4, 7} or {x, y} ⊂ {2, 5, 8}

or {x, y} ⊂ {3, 6, 9} ⇒ (x, y) ∈ R
2
. Hence, R

1
 ⊂ R

2
. Similarly, {x, y} ∈ R

2
 ⇒ {x, y}

⊂ {1, 4, 7} or {x, y} ⊂ {2, 5, 8} or  {x, y} ⊂ {3, 6, 9} ⇒ x – y is divisible by

3 ⇒ {x, y} ∈ R
1
. This shows that R

2
 ⊂ R

1
. Hence, R

1
 = R

2
.

Example 44 Let f : X → Y be a function. Define a relation R in X given by

R = {(a, b): f(a) = f(b)}. Examine whether R is an equivalence relation or not.

Solution For every a ∈ X, (a, a) ∈ R, since f (a) = f (a), showing that R is reflexive.

Similarly, (a, b) ∈ R ⇒ f (a) = f (b) ⇒ f (b) = f (a) ⇒ (b, a) ∈ R. Therefore, R is

symmetric. Further, (a, b) ∈ R and (b, c) ∈ R ⇒ f (a) = f (b) and f (b) = f (c) ⇒ f (a)

= f (c) ⇒ (a, c) ∈ R, which implies that R is transitive. Hence, R is an equivalence

relation.

Example 45 Determine which of the following binary operations on the set R are

associative and which are commutative.

(a) a ∗ b = 1 ∀  a, b ∈ R (b)  a ∗ b = 
( )

2

a b+
 ∀  a, b ∈ R

Solution

(a) Clearly, by definition a ∗ b = b ∗ a = 1, ∀ a, b ∈ R. Also

(a ∗ b) ∗ c = (1 ∗ c) =1 and a ∗ (b ∗ c) = a ∗ (1) = 1, ∀  a, b, c ∈ R. Hence

R is both associative and commutative.

(b) a ∗ b = 
2 2

a b b a+ +
=  = b ∗ a, shows that ∗ is commutative. Further,

(a ∗ b) ∗ c =
2

a b+ 
 
 

∗ c.

=
22

2 4

a b
c

a b c

+ 
+  + +  = .

But a ∗ (b ∗ c) =
2

b c
a

+ 
∗  
 

=
2 22

2 4 4

b c
a

a b c a b c

+
+

+ + + +
= ≠  in general.

Hence, ∗ is not associative.
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Example 46 Find the number of all one-one functions from set A = {1, 2, 3} to itself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation on three

symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to itself is

same as total number of permutations on three symbols 1, 2, 3 which is 3! = 6.

Example 47 Let A = {1, 2, 3}. Then show that  the number of relations containing (1, 2)

and (2, 3) which are reflexive and transitive but not symmetric is three.

Solution The smallest relation R
1
 containing (1, 2) and (2, 3) which is reflexive and

transitive but not symmetric is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Now, if we add

the pair (2, 1) to R
1
 to get R

2
, then the relation R

2
 will be reflexive, transitive but not

symmetric. Similarly, we can obtain R
3
 by adding (3, 2) to R

1
 to get the desired relation.

However, we can not add two pairs (2, 1), (3, 2) or single pair (3, 1) to R
1
 at a time, as

by doing so, we will be forced to add the remaining pair in order to maintain transitivity

and in the process, the relation will become symmetric also which is not required. Thus,

the total number of desired relations is three.

Example 48 Show that the number of equivalence relation in the set {1, 2, 3} containing

(1, 2) and (2, 1) is two.

Solution The smallest equivalence relation R
1
 containing (1, 2) and (2, 1) is {(1, 1),

(2, 2), (3, 3), (1, 2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3), (3, 2),

(1, 3) and (3, 1). If we add any one, say (2, 3) to R
1
, then for symmetry we must add

(3, 2) also and now for transitivity we are forced to add (1, 3) and (3, 1). Thus, the only

equivalence relation bigger than R
1
 is the universal relation. This shows that the total

number of equivalence relations containing (1, 2) and (2, 1) is two.

Example 49 Show that the number of binary operations on {1, 2} having 1 as identity

and having 2 as the inverse of 2 is exactly one.

Solution A binary operation ∗ on {1, 2} is a function from {1, 2} × {1, 2} to {1, 2}, i.e.,

a function from {(1, 1), (1, 2), (2, 1), (2, 2)} → {1, 2}. Since 1 is the identity for the

desired binary operation ∗, ∗ (1, 1) = 1, ∗ (1, 2) = 2, ∗ (2, 1) = 2 and the only choice

left is for the pair (2, 2). Since 2 is the inverse of 2, i.e., ∗ (2, 2) must be equal to 1. Thus,

the number of desired binary operation is only one.

Example 50 Consider the identity function I
N
 : N → N defined as I

N
 (x) = x ∀ x ∈ N.

Show that although I
N
 is onto but I

N
 + I

N
 : N → N defined as

(I
N
 + I

N
) (x) = I

N
 (x) + I

N
 (x) = x + x = 2x is not onto.

Solution Clearly I
N
 is onto. But I

N
 + I

N
 is not onto, as we can find an element 3

in the co-domain N such that there does not exist any x in the domain N with

(I
N
 + I

N
) (x) = 2x = 3.
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Example 51 Consider a function f : 0,
2

π 
→  

R given by f (x) = sin x and

g : 0,
2

π 
→  

R given by g(x) = cos x. Show that f and g are one-one, but f + g is not

one-one.

Solution Since for any two distinct elements x
1
 and x

2
 in 0,

2

π 
  

, sin x
1
 ≠ sin x

2
 and

cos x
1
 ≠ cos x

2
, both f and g must be one-one. But (f + g) (0) = sin 0 + cos 0 = 1 and

(f + g)
2

π 
 
 

 = sin cos 1
2 2

π π
+ = . Therefore, f + g is not one-one.

Miscellaneous Exercise on Chapter 1

1. Let f : R → R be defined as f (x) = 10x + 7. Find the function g : R → R such

that g o f = f o g = 1
R
.

2. Let f : W → W be defined as f (n) = n – 1, if n is odd and f (n) = n + 1, if n is

even. Show that f is invertible. Find the inverse of f. Here, W is the set of all

whole numbers.

3. If f : R → R is defined by f(x) = x2 – 3x + 2, find f (f (x)).

4. Show that the function f : R → {x ∈ R : – 1 < x < 1} defined by ( )
1 | |

x
f x

x
=

+
,

x ∈ R is one one and onto function.

5. Show that the function f : R → R given by f (x) = x3 is injective.

6. Give examples of two functions f : N → Z and g : Z → Z such that g o f is

injective but g is not injective.

(Hint : Consider f (x) = x and g (x) = | x |).

7. Give examples of two functions f : N → N and g : N → N such that g o f is onto

but f is not onto.

(Hint : Consider f (x) = x + 1 and 
1if 1

( )
1 if 1

x x
g x

x

− >
= 

=

8. Given a non empty set X, consider P(X) which is the set of all subsets of X.
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Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation

on P(X)? Justify your answer.

9. Given a non-empty set X, consider the binary operation ∗ : P(X) × P(X) → P(X)

given by A ∗ B = A ∩ B ∀ A, B in P(X), where P(X) is the power set of X.

Show that X is the identity element for this operation and X is the only invertible

element in P(X) with respect to the operation ∗.

10. Find the number of all onto functions from the set {1, 2, 3, ... , n} to itself.

11. Let S = {a, b, c} and T = {1, 2, 3}. Find F–1 of the following functions F from S

to T, if it exists.

(i) F = {(a, 3), (b, 2), (c, 1)} (ii) F = {(a, 2), (b, 1), (c, 1)}

12. Consider the binary operations ∗ : R × R → R and o : R × R → R defined as

a ∗b = |a – b| and a o b = a, ∀ a, b ∈ R. Show that ∗ is commutative but not

associative, o is associative but not commutative. Further, show that ∀ a, b, c ∈ R,

a ∗ (b o c) = (a ∗ b) o (a ∗ c). [If it is so, we say that the operation ∗ distributes

over the operation o]. Does o distribute over ∗? Justify your answer.

13. Given a non-empty set X, let ∗ : P(X) × P(X) → P(X) be defined as

A * B = (A – B) ∪ (B – A), ∀ A, B ∈ P(X). Show that the empty set φ is the

identity for the operation ∗ and all the elements A of P(X) are invertible with

A–1 = A. (Hint : (A – φ) ∪ (φ – A) = A and (A – A) ∪ (A – A) = A ∗ A = φ).

14. Define a binary operation ∗ on the set {0, 1, 2, 3, 4, 5} as

,        if 6

6  if 6

a b a b
a b

a b a b

+ + <
∗ = 

+ − + ≥

Show that zero is the identity for this operation and each element a ≠ 0 of the set

is invertible with 6 – a being the inverse of a.

15. Let A = {– 1, 0, 1, 2}, B = {– 4, – 2, 0, 2} and f, g : A → B be functions defined

by f (x) = x2 – x, x ∈ A and 
1

( ) 2 1,
2

g x x= − −  x ∈ A. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f : A → B and

g : A → B such that f (a) = g (a) ∀ a ∈ A, are called equal functions).

16. Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are

reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4

17. Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is

(A) 1 (B) 2 (C) 3 (D) 4
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18. Let f : R → R be the Signum Function defined as

1, 0

( ) 0, 0

1, 0

x

f x x

x

>


= =
− <

and g : R → R be the Greatest Integer Function given by g (x) = [x], where [x] is

greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?

19. Number of binary operations on the set {a, b} are

(A) 10 (B) 16 (C) 20 (D ) 8

Summary

In this chapter, we studied different types of relations and equivalence relation,

composition of functions, invertible functions and binary operations. The main features

of this chapter are as follows:

® Empty relation is the relation R in X given by R = φ ⊂ X × X.

® Universal relation is the relation R in X given by R = X × X.

® Reflexive relation R in X is a relation with (a, a) ∈ R ∀ a ∈ X.

® Symmetric relation R in X is a relation satisfying (a, b) ∈ R implies (b, a) ∈ R.

® Transitive relation R in X is a relation satisfying (a, b) ∈ R and (b, c) ∈ R

implies that (a, c) ∈ R.

® Equivalence relation R in X is a relation which is reflexive, symmetric and

transitive.

® Equivalence class [a] containing a ∈ X for an equivalence relation R in X is

the subset of X containing all elements b related to a.

® A function f : X → Y is one-one (or injective) if

f (x
1
) = f (x

2
) ⇒ x

1
 = x

2
 ∀  x

1
, x

2
 ∈ X.

® A function f : X → Y is onto (or surjective) if given any y ∈ Y, ∃ x ∈ X such

that f (x) = y.

® A function f : X → Y is one-one and onto (or bijective), if f is both one-one

and onto.

® The composition of functions f : A → B and g : B → C is the function

gof : A → C given by gof (x) = g(f (x)) ∀  x ∈ A.

® A function f : X → Y is invertible if ∃ g : Y → X such that gof = I
X
 and

fog = I
Y
.

® A function f : X → Y is invertible if and only if f is one-one and onto.
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® Given a finite set X, a function f : X → X is one-one (respectively onto) if and

only if f is onto (respectively one-one). This is the characteristic property of a

finite set. This is not true for infinite set

® A binary operation ∗ on a set A is a function ∗ from A × A to A.

® An element e ∈ X is the identity element for binary operation ∗ : X × X → X,

if a ∗ e = a = e ∗ a ∀ a ∈ X.

® An element a ∈ X is invertible for binary operation ∗ : X × X → X,  if

there exists b ∈ X such that a ∗ b = e = b ∗ a where, e is the identity for the

binary operation ∗. The element b is called inverse of a and is denoted by a–1.

® An operation ∗ on X is commutative if a ∗ b = b ∗ a ∀ a, b in X.

® An operation ∗ on X is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c)∀ a, b, c in X.

Historical Note

The concept of function has evolved over a long period of time starting from
R. Descartes (1596-1650), who used the word ‘function’ in his manuscript
“Geometrie” in 1637 to mean some positive integral power xn of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. James
Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae Quadratura”
(1667) considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later G. W.
Leibnitz (1646-1716) in his manuscript “Methodus tangentium inversa, seu  de
functionibus” written in 1673 used the word ‘function’ to mean a quantity varying
from point to point on a curve such as the coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean
quantities that depend on a variable. He was the first to use the phrase ‘function
of x’. John Bernoulli (1667-1748) used the notation φx for the first time in 1718 to
indicate a function of x. But the general adoption of symbols like f, F, φ, ψ ... to
represent functions was made by Leonhard Euler (1707-1783) in 1734 in the first
part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange
(1736-1813) published his manuscripts “Theorie des functions analytiques” in
1793, where he discussed  about analytic function and used the notion f (x), F(x),
φ (x) etc. for different function of x. Subsequently, Lejeunne Dirichlet
(1805-1859) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
developed by Georg Cantor (1845-1918). The set theoretic definition of function
known to us presently is simply an abstraction of the definition given by Dirichlet
in a rigorous manner.

—vvvvv—
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